Warm-up

- 1. Given $f(x) = x^4 10^2 2x + 4$, find *f*(-3).
- 2. Given $f(x) = 3x^3 + 8x^2 + 5x 7$, find *f*(-2).

Long Division of Polynomials

Example 1

a) Divide $(6x^3 - 19x^2 + 16x - 4)$ by (x - 2).

b) Divide $(x^3 - 2x^2 - 9)$ by (x - 3).

Practice Problem 1

Divide $(2x^2 + 10x + 12)$ by (x + 3).

Example 2 (Remainders)

Divide $x^2 + 3x + 5$ by x+1

Example 3 (Missing Terms)

Divide $8x^3 - 1$ by 2x - 1.

Practice Problem 2

Divide $7x^3 + 3$ by x + 2

Practice Problem 3 (Division by Higher Degree Polynomials)

Divide $-2+3x-5x^2+4x^3+2x^4$ by x^2+2x-3

Synthetic Division

Example 4

Divide $x^4 - 10x^2 - 2x + 4$ by x + 3

Practice Problem 4

Divide $(3x^3 - 17x^2 + 15x - 25) \div (x - 5)$

Remainder Theorem

Synthetic division can be used to evaluate a polynomial function. To find f(k), divide f(x) by x - k:

Example 5 Given $f(x) = 3x^3 + 8x^2 + 5x - 7$ find *f*(-2).

Practice Problem 5 Given $f(x) = 4x^3 + 10x^2 - 3x - 8$ find *f*(-1).

How can you tell if a binomial is a factor of another polynomial?

Factor	Zero
x+5	
x - 3	
x + 2	
	4
	-6
	-1

Long Division and Synthetic Division

Using Synthetic Division to Factor a Polynomial

Example 6

Given $f(x) = 2x^4 + 7x^3 - 4x^2 - 27x - 18$ and f(2) = 0 and f(-3) = 0Factor f(x) completely.

Practice Problem 6

Given $f(x) = x^4 - 4x^3 - 15x^2 + 58x - 40$ and f(5) = 0 and f(-4) = 0 factor f(x) completely.

Summary

In summary, the remainder r, obtained in the synthetic division of f(x) by x - k, provides the following information:

1.		
2.	2	
3.	3	